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Rapid Simulation of P Values for Product Methods and Multiple-Testing
Adjustment in Association Studies
S. R. Seaman and B. Müller-Myhsok
Max Planck Institute of Psychiatry, Munich, Germany

A major aim of association studies is the identification of polymorphisms (usually SNPs) associated with a trait.
Tests of association may be based on individual SNPs or on sets of neighboring SNPs, by use of (for example) a
product P value method or Hotelling’s T test. Linkage disequilibrium, the nonindependence of SNPs in physical
proximity, causes problems for all these tests. First, multiple-testing correction for individual-SNP tests or for
multilocus tests either leads to conservative P values (if Bonferroni correction is used) or is computationally expensive
(if permutation is used). Second, calculation of product P values usually requires permutation. Here, we present
the direct simulation approach (DSA), a method that accurately approximates P values obtained by permutation
but is much faster. It may be used whenever tests are based on score statistics—for example, with Armitage’s trend
test or its multivariate analogue. The DSA can be used with binary, continuous, or count traits and allows adjustment
for covariates. We demonstrate the accuracy of the DSA on real and simulated data and illustrate how it might be
used in the analysis of a whole-genome association study.

Introduction

Association studies are commonly used to test for as-
sociation between some trait (e.g., disease) and SNPs
within a candidate gene or region. These candidate genes
or regions are chosen because of their known biological
function or because they have been identified as inter-
esting in linkage studies. As the cost of SNP genotyping
diminishes, whole-genome association studies become
ever more feasible.

Many methods are available for testing association
between genotype and trait. Each SNP may be tested
individually, or information from a set of neighboring
SNPs may be combined. The latter approach may be
more powerful, since a causal locus may be associated
with not just one SNP but with several nearby SNPs.
When information from a set of SNPs is combined, the
test may be based on haplotype scoring (Schaid et al.
2002; Fan and Knapp 2003) or on locus scoring (Xiong
et al. 2002; Chapman et al. 2003). Haplotype scoring
means that several SNPs are treated together as a mul-
tiallelic marker and the trait is regressed on an individ-
ual’s two haplotypes at this marker. As haplotypes are
usually not observed, they must be imputed by use of
(for example) an expectation-maximization (EM) al-
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gorithm. Locus scoring means that there is a covariate
for each SNP, indicating the number of variant alleles
carried by an individual at that SNP, and that the trait
is regressed on this set of covariates. In this case, there
is no need to impute the haplotypes.

In this article, we consider tests based on individual
SNPs or on locus scoring of SNP sets. There is a lively
debate about whether tests based on haplotype scoring
or those based on locus scoring are more powerful. This
article does not aim to provide evidence to support ei-
ther position. Here, we note only that a number of
studies have found evidence in favor of locus scoring—
for example, studies by Long and Langley (1999), Kap-
lan and Morris (2001), and Chapman et al. (2003).
Zaykin et al. (2002a) found that tests based on hap-
lotypes were more powerful, but they only compared
them with tests based on individual SNPs, rather than
tests based on locus scoring of the corresponding sets
of SNPs.

A popular test for association between a binary trait,
Y, and an individual SNP is Armitage’s test for trend
(Sasieni 1997). Under Hardy-Weinberg equilibrium, this
test is asymptotically equivalent to the allele-counting
test but has the advantage that it retains the correct type
I error rate when Hardy-Weinberg equilibrium is vio-
lated (Sasieni 1997). Label the two alleles at the SNP
as wild type and variant (the choice of assignment is
unimportant), and assign to the trait the two possible
values of 0 and 1. For example, in a case-control study,
1 would denote a case, and 0 would denote a control.
Let X denote the locus score for an individual—that is,
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the number of variant alleles (0, 1, or 2) carried by that
individual. Consider the logistic regression of Y on X:

P(Y p 1)
log p a � bX . (1)[ ]P(Y p 0)

Armitage’s test is the score test for the null hypothesis
that . Suppose that in equation (1) is re-b p 0 a � bX
placed by , where is the locusa � b X � … � b X X1 1 J J j

score at SNP j . Then, a generalization of(j p 1, … , J)
Armitage’s test to J SNPs is the score test of the null
hypothesis that . This multilocus Ar-b p … p b p 01 J

mitage (MLA) test is closely related to Hotelling’s T test
(see the “Score Statistics for a Class of GLMs” section
below). Alternatives to the MLA test or to Hotelling’s
T test are Fisher’s product P value method (FPM) (Fisher
1932), the truncated product method (TPM) of Zaykin
et al. (2002b), and the rank TPM of Dudbridge and
Koeleman (2003). In these methods, a P value for each
individual SNP is calculated (e.g., by use of Armitage’s
test), and then a combined test statistic is obtained by
multiplying together either all the P values (in the FPM),
just those below some significance threshold (in the
TPM), or the R smallest P values (in the rank TPM). If
the individual tests are independent, then exact analytic
expressions exist for the significance of the combined
test statistic. Otherwise, Zaykin et al. (2003b) and Dud-
bridge and Koeleman (2003) propose a number of ap-
proximate methods and propose permutation as an ex-
act (apart from Monte Carlo error) method.

Armitage’s test and its MLA test generalization have
the advantage that the null distributions of their test
statistics are known, and hence P values can be calcu-
lated analytically. However, when multiple tests are per-
formed, these P values are usually adjusted to take this
into account. The most common approach is to focus
on the minimum P value and to evaluate the probability
that a value as small as this would be observed if all
the null hypotheses were true. Two simple ways to do
this are the Bonferroni and Šidák methods (Šidák 1967),
but these lack power when the test statistics are posi-
tively correlated, as is the case with SNPs in linkage
disequilibrium (LD). In this situation, efficient multiple-
testing correction requires permutation.

So, permutation may be required for product P value
methods and also for efficient multiple-testing correc-
tion of Armitage and MLA tests. The use of permutation
can be expensive in terms of computer time, especially
if the number of subjects in the study is large. In this
article, we introduce an alternative method, the direct
simulation approach (DSA). This involves deriving the
multivariate normal asymptotic null joint distribution
of the test statistics and sampling directly from it. The
DSA is much faster than permutation, and the com-
putational requirement is independent of the number of

subjects. It may be used whenever the individual tests
are score tests. These include not only tests for binary
responses but also tests for continuous and count
responses.

In the next section, we derive the form of the score
statistic for a class of generalized linear models (GLMs).
The “Minimum and Product P Values” section below
contains a description of the minimum P value and
product P value methods and a suitable permutation
algorithm for calculating them. The DSA is introduced
in the “DSA” section and is compared with the permu-
tation algorithm. Illustrative applications of the DSA fol-
low in the “Applications to Minimum and Product P
Values” and “DSA in a Whole-Genome Association
Study” sections. Finally, there is the “Discussion” section.

Score Statistics for a Class of GLMs

Much of what follows in the section below is adapted
from Schaid et al. (2002). Let Y denote a measured trait,

a vector of measured environmental factors plus unityXe

as the first element, and a vector of locus scores—Xg

that is, the lth element of is the number of variantXg

alleles (0, 1, or 2) carried by the individual at SNP l.
We assume the relation between trait Y and covariates

can be expressed as a GLM for expo-T T TZ p (X , X )e g

nential family data. Let , whereT T Th p X a � X b p Z ge g

. The likelihood of Y, given Z, can beT T Tg p (a , b )
written as

Yh � b(h)
L(YFZ) p exp � c(Y,f) ,[ ]a(f)

where a, b, and c are known functions, and where isf

the dispersion parameter. Let f denote the link function,
so that the expected trait value, given the covariates, is

. Parameter vector describes�1 T˜E(YFZ) p Y p f (Z g) a

the influence of environmental factors on the trait, and
includes an intercept term. Parameter describes theb

effect of genotype on the trait. No association between
trait and genotype corresponds to .b p 0

Let , , , and denote the values of , ,X X Z Y X Xei gi i i e g

Z, and Y for subject i ( ), and let be thei p 1, … ,N Li

subject’s likelihood contribution. As Schaid et al. (2002)
show, the score statistic for genetic markers, , ad-Xg

justed for environmental covariates, , isXe

N N ˜� log L Y � Yi i iU p p X , (2)� �b gi
�b a(f)ip1 ip1

where , the fitted value for subject i when , isỸ b p 0i

obtained by regressing Y on just to obtain the max-Xe

imum-likelihood estimate of and then settingâ a

.�1 T˜ ˆY p f (X a)i ei
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The variance of under the null hypothesis ( )U Hb 0

that , with the adjustment for the environmentalb p 0
covariates taken into account, is ,�1V p V � V V Vb bb ba aa ab

where is the appropriate submatrix of matrix :V V(U )ij g

N ′′b (h )i TV(U ) p Z Z . (3)�g i i[ ]a(f)ip1

Without environmental covariates, consists of onlya

an intercept term, and the variance simplifies to

N′′b (h )i T T¯ ¯V p X X � N X X ,�( )b gi gi g g[ ]a(f) ip1

where . Under , is asymptoticallyNX̄ p � X /N H Ug gi 0 bip1

distributed multivariate normal (McCullagh and Nelder
1989), with mean zero and variance :Vb

U ∼ N(0,V ) . (4)b b

This is an asymptotic result, which requires that the
dimension of Z (i.e., the number of environmental fac-
tors, including the intercept, plus the number of SNPs)
be small in comparison with the number of subjects, N.
In most of the applications reported in the “Applica-
tions to Minimum and Product P Values” and “DSA in
a Whole-Genome Association Study” sections, N is ∼10
times the dimension of Z. It follows from equation (4)
that the score test statistic, , is asymp-T �1T p U V Ub b b

totically x2 distributed with degrees of freedom equal
to the length of vector . If matrix is not of fullX Vg b

rank, is replaced by its generalized inverse, and the�1Vb

number of degrees of freedom is now equal to the rank
of .Vb

Schaid et al. (2002) give the form of , , andỸ a(f)
for GLMs based on Gaussian, binomial, and Pois-′′b (h)

son distributions. For a binary trait and no covariates,
, , and , and it is′′˜ ¯ ¯ ¯Y p Y a (f) p 1 b (h) p Y (1 � Y )

straightforward to show that T is the same as the test
statistic described by Chapman et al. (2003). It is also
closely related to Hotelling’s T test (as used by, e.g.,
Xiong et al. [2002] and Fan and Knapp [2003]), the
difference being that, in Hotelling’s test, is theVb

weighted mean of the variance of estimated in theXg

cases and controls separately. In the special case in
which is univariate, the score test reduces to Ar-Xg

mitage’s test (strictly, Armitage’s trend test statistic is
).T [N � 1]/N

Minimum and Product P Values

Suppose L null hypotheses, , are being testedH , … ,H01 0L

by use of score tests. Let denote the respectiveT , … ,T1 L

score test statistics, and let denote the corre-t , … ,t1 L

sponding observed values. Under the composite null

hypothesis , the marginal distributionsLH p ∩ H0 kp1 0l

of are with known degrees of freedom,2T , … , T x1 L

. Let random variable denote the P valued , … , d P1 L l

for —that is, , where is the dis-T P p 1 � F (T) Fl l d l dl l

tribution function of the distribution. Let be2x pd ll

the observed value of . Hence, .P p p P(T � t F H )l l l l 0l

Let be some function, and letG p G(P , … ,G ) g p1 L

be its observed value. Suppose we wish toG(p , … ,p )1 L

calculate . Here are four examples ofQ p P(G � gFH )0

G that could be of interest:

1. Let denote the ordered P values. IfP � … � P(1) (L)

, then Q is the minimum P value,G(P , … ,P ) p P1 L (1)

. Note that we might also want to calculatePmin

for all . This wouldG (P , … ,P ) p P l p 2, … ,Ll 1 L (l)

allow the null hypotheses to be testedH , … ,H01 0L

individually (Westfall et al. 2001).
2. If , then Q is the FPM P value,L

G(P , … ,P ) p � P1 L llp1

.PFish

3. If , where I is the in-L
G(P , … ,P ) p � PI (P � t)1 L l llp1

dicator function, then Q is the TPM P value with
threshold t, .Ptrunc(t)

4. If , then Q is the rank TPMR
G(P , … ,P ) p � P1 L (l)lp1

P value based on the R smallest P values, .Prank(R)

When the L tests are independent, formulae for these
P values are available (Zaykin et al. 2002b; Dudbridge
and Koeleman 2003). However, when the test statistics
are correlated, these tests do not apply. The Bonferroni
method provides a formula for when tests may bePmin

dependent, but this is an upper bound and is conser-
vative when tests are positively correlated. Zaykin et al.
(2002b) show how to calculate and when theP Ptrunc(t) Fish

correlation matrix of the P values is known, but typi-
cally this will not be the case. Dudbridge and Koeleman
(2003) describe a method of estimating , ,P Ptrunc(t) rank(R)

and , but this method is untested and, anyway, re-PFish

quires the calculation of by permutation. NyholtPmin

(2004) describes a simple way of estimating usingPmin

a Šidák correction based on an effective number of in-
dependent tests estimated from the correlation matrix
of imputed haplotypes. However, the performance of
this method has not been tested properly. Permutation
remains the most reliable way of calculating ,Pmin

, , and .P P Ptrunc(t) rank(R) Fish

An appropriate permutation algorithm is described
by Schaid et al. (2002). Although not explicitly stated
by Schaid et al., the algorithm requires the assumption
that and are independent. Under , the traitX X He g 0

value, Y, and the genotype, , are independent, so anyXg

permutation of the N values among the N subjectsXg

is, a priori, equally probable. The vector Y is permuted
B times and, for permutation b ( ), the Pb p 1, … ,B
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values, , are calculated and, from these,(b) (b)p , … , p1 L

. An unbiased estimator of Q is(b) (b) (b)G p G(p , … , p )1 L

B (b)I(G � g)
Q̂ p .�

Bbp1

DSA

Suppose tests depend on a total of M SNPs.T , … ,T1 L

For example, for each l ( ), might be Ar-l p 1, … ,L Tl

mitage’s test statistic for SNP l, and . Let E beM p L
the dimension of —that is, the number of environ-Xe

mental factors (including the intercept). Suppose M �
is small compared with N—for example,E E � M �

(below, we discuss what to do otherwise). EquationN/10
(2) shows that, to calculate the score statistics required
by , it is necessary to evaluate the sum ofT , … ,T1 L

over the N individuals. This must be done˜(Y � Y ) Xi i gi

for each permutation. The variance of the score statistic
is independent of Y (see eq. [3]) and is calculated only
once. Thus, the computation required is proportional to
N, the number of subjects in the study. The DSA, which
we now describe, avoids the need to perform these sum-
mations at each permutation, and its computational re-
quirement is independent of N. It therefore can be much
faster than permutation, especially when N is large.

Let and denote the score-statistic vector andU Vb(�) b(�)

its variance matrix for the whole set of M SNPs. Let
and denote the corresponding entities for justU Vb(l) b(l)

the SNPs involved in test , so that .T �1T T p U V Ul l b(l) b(l) b(l)

Equation (4) shows that, under the null hypothesis that
none of the M SNPs are associated with the trait,

is approximately distributed . Since, forU N(0,V )b(�) b(�)

each l, is a subvector of , its distribution isU Ub(l) b(�)

a marginal distribution of the distribution of .Ub(�)

Therefore, equation (4) implies the null joint distribu-
tion of . So, to obtain B samples fromT T(U , … ,U )b(1) b(L)

the null joint distribution of , it is not nec-(T , … ,T )1 L

essary to permute vector Y B times and to calculate
each time by use of equation (2). Instead,U , … ,Ub(l) b(L)

one can directly simulate B vectors independentlyUb(�)

from an distribution and obtain B sets of vectorsN(0,V )b

as the appropriate subvectors. The re-U , … ,Ub(l) b(L)

mainder of the algorithm—that is, the calculation of
; of ; and finally of —remains(b) (b) (b) (b) (b)t , … ,t p , … ,p G1 L 1 L

unchanged.
If each of the L tests is based on just one SNP (e.g.,

Armitage tests) and so , then theU p (U , … ,U )b(�) b(1) b(L)

algorithm can be accelerated slightly by noting that,
in this case, . Since it follows�1/2� �( T , … , T ) p V U1 L b(�) b(�)

from equation (4) that asymptoti-�1/2V U ∼ N(0,C)b(�) b(�)

cally, where C is the correlation matrix corresponding
to variance matrix , the B vectors (b) (b)� �V ( T , … , T )b(�) 1 L

can be directly simulated from an distribution.N(0,C)

When is not small in comparison with N (e.g.,M � E
), the normal approximation of equationM � E 1 N/10

(4) may not be so good. However, if the P value of
interest is , then this need not be a problem. In thisPmin

case, the M SNPs may be divided into K blocks (e.g.,
of size ), and the score vector may be sim-� N/10 � E
ulated for each block independently. To be more precise,
denote the simulated score vector for block k (k p

) as . One would simulate for each1, … ,K U Ub(�)k b(�)k

block k independently and then would calculate the
whole vector of test statistics, , from(b) (b)( T , … ,T )1 L

. An example is given in the “DSA inU , … ,Ub(�)1 b(�)K

a Whole-Genome Association Study” section. This
amounts to the assumption of independence between
pairs of SNPs in different blocks, which will cause some
loss of power. However, since most of the dependence
structure between SNPs—that is, the structure within
blocks—is being captured, the loss should be small. If
haplotype block structure is observed in the region
being analyzed, then the divisions between blocks of
SNPs can be chosen to coincide with haplotype block
boundaries.

Note that the DSA requires complete data to calculate
. Missing genotypes must be imputed. Provided thatVb

the imputation is done in a way that does not use in-
formation on the trait values of the individuals, the type
I error rate will not be inflated. One method is to impute
missing values as their posterior expectations, given the
observed genotype data (under ). This requires hap-H0

lotype frequencies. As these are usually not known, an
EM algorithm could be used to estimate them. Multi-
locus score tests (and Hotelling’s test) require complete
data, and so imputation must be performed regardless
of whether permutation or the DSA is used. However,
when are univariate (individual SNP) tests, theT , … ,T1 L

DSA has the disadvantage that it requires imputation,
whereas permutation does not. As the EM algorithm
may require considerable computational time, we use a
simpler and much faster linear regression procedure. For
each j ( ) in turn, the locus score at SNP j isj p 1, … ,M
regressed on the locus scores at neighboring SNPs, and
missing scores at SNP j are imputed as their fitted values.
There is flexibility in the choice of neighboring loci on
which to base imputation of a target SNP. We recom-
mend either the use of all other genotyped SNPs in the
same gene or haplotype block as the target SNP or the
use of all genotyped SNPs whose LD with it exceeds a
certain threshold. Provided the ability (measured by

) of the chosen set to predict the target SNP is high,2R
the addition of further markers to the set should make
little difference to the imputed values.

In the two sections that follow, we illustrate several
uses of the DSA and compare its performance with-
permutation. Analyses were performed on a Linux
workstation with a 1.6-GHz Advanced Micro Devices
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Table 1

P Values Obtained for Eight Genes by Use of the Minimum P Value Method, FPM, TPM, and MLA Test

GENE

P VALUE BY USE OF

MPMa

( )Pmin

FPM
( )PFish

TPM
( )Ptrunc(0.05) MLA

DSAb PerIc Permd DSAb PerIc Permd DSAb PerIc Permd Asyme PerIc

AVP .910 .936 .939 .884 .881 .880 1.000 1.000 1.000 .944 .946
BAG1 .377 .384 .415 .252 .255 .272 1.000 1.000 1.000 .277 .282
CRH .133 .131 .128 .236 .235 .230 1.000 1.000 .128 .206 .206
FKBP4 .795 .815 .818 .920 .924 .924 1.000 1.000 1.000 .877 .877
FKBP5 .004 .003 .004 .001 .001 .001 .001 .001 .001 .016 .012
NR3C1 .795 .789 .818 .824 .820 .828 1.000 1.000 1.000 .393 .388
TEBP .888 .872 .871 .758 .756 .746 1.000 1.000 1.000 .744 .765
STUB1 .064 .070 .070 .110 .114 .112 .064 .070 .070 .098 .097

a MPM p minimum P value method.
b Calculated using the DSA with imputation of missing genotypes.
c Calculated using permutation with imputation of missing genotypes.
d Calculated using permutation without imputation.
e Calculated using the asymptotic null distribution with imputation.

(AMD) processor using the software R, and all code
was optimized to make full use of the latter’s powerful
matrix algebra computation (see Max Planck Institute
of Psychiatry Web site for R code).

Applications to Minimum and Product P Values

The Munich Anti-Depressant Drug Response Study
(MARS) is a longitudinal study of depressed patients that
investigates associations between candidate genes and
responses to treatment with antidepressant drugs (Binder
et al. 2004). Here, we analyze a total of 31 SNPs in eight
genes, using Armitage’s test for each individual SNP and
using the MLA test, FPM, and TPM for each whole gene.
The tested trait was response to treatment at 2 wk. Of
227 patients, 51% responded.

Both the DSA and permutation were used to calculate
, , and . The results in table 1 are basedP P Pmin Fish trunc(0.05)

on permutations/simulations, except forB p 50,000
the result for FKBP5, which was highly significant and
thus required a larger number; we used .B p 200,000
Usually, !50,000 permutations would be used for the
nonsignificant genes, but we wanted to reduce the
Monte Carlo variance for the comparison of P values
calculated by the DSA and permutation. In table 1, the
columns labeled “DSA” and “PerI” contain P values
calculated by the DSA and permutation, respectively,
after missing values were imputed. The columns labeled
“Perm” have P values for permutation with missing
values left as missing (1.7% of genotypes were missing).
The last two columns of the table give P values for the
MLA test, calculated by use of both the usual asymp-
totic assumption (the column labeled “Asym”) and2x

permutation.
P values calculated by the DSA and permutation after

imputation of missing values are very similar. The dif-
ferences are no greater than those between P values for
the MLA test calculated using the asymptotic assump-
tion versus permutation. The effect of imputed mis-
sing data is observed by comparing columns labeled
“PerI” with those labeled “Perm.” The pairs of P values
are similar. For example, for FKBP5, , , andP Pmin Fish

are .0043, .0010, and .0008, respectively, with-Ptrunc(0.05)

out imputation and are .0033, .0009, and .0007, re-
spectively, with imputation.

The smallest raw P value observed for the 31 SNPs
was .00162 (in FKBP5), which makes the Bonferroni-
corrected P value . This compares.00162 # 31 p .050
with a P value of .031 for permutation, showing that
calculating by permutation can be worthwhile. ThePmin

use of the FPM or TPM yields even more significant P
values for FKBP5: and are ∼5 times smallerP PFish trunc(0.05)

than . This is because not just one but three of thePmin

four SNPs in FKBP5 have small P values. The MLA
test applied to FKBP5 yields a much less significant P
value: by use of the asymptotic assumption,P p .016
and by use of permutation. After BonferroniP p .012
correction for the fact that eight genes have been tested,
this becomes nonsignificant: .P p .016 # 8 p .13

The time required for this analysis was 62 s for the
DSA, compared with 650 s for the same analysis using
permutation without imputation—a reduction of 90%.
After it was established that FKBP5 was significantly
associated with response to treatment, a further 29
SNPs within and near this gene were typed in an effort
to fine map the causal locus (Binder et al. 2004). Using
the complete set of 33 SNPs, we compared P values
obtained by the DSA with those obtained by permu-
tation. permutations/simulations wereB p 200,000
performed. This is a challenging data set, since the spac-
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ing between SNPs is quite small (average spacing 9 kb)
and the ratio of the number of subjects to the number
of parameters (34) is only 6.7. Thus, the multivariate
normal approximation of the score vector (eq. [4]) may
not be so good. The values of from the DSA, per-Pmin

mutation with imputation, and permutation without
imputation were .029, .024, and .036, respectively. The
Bonferroni-corrected P value was .070, so the result of
permutation or the DSA is a noticeable improvement
on this value. The values were .0031, .0027, andPFish

.0036 for the DSA, permutation with imputation, and
permutation without imputation, respectively. The

values were .0055, .0048, and .0046 for thePtrunc(0.05)

three methods. Thus, even for this challenging data set,
the performance of the DSA is encouraging. The time
required was 44 s for the DSA, compared with 640 s
for permutation. The MLA test was also performed on
this data set but was found to yield a much less signif-
icant result than the minimum P value method, FPM,
or TPM, and, again, the P value obtained using the
asymptotic assumption ( ) was greater thanP p .173
that obtained using permutation ( ).P p .141

A more extensive evaluation of the DSA was per-
formed using data simulated by the HaploBlock version
1.2 software (Greenspan and Geiger 2004). An original
founding population size of 20 individuals was as-
sumed. This expanded with an exponential growth rate
of 1.1, reaching 50,000 in ∼80 generations, and then
drifted for a further 170 generations. From this pop-
ulation, 2,000 haplotypes, each containing 100 SNPs
with an average intermarker spacing of 2 kb, were sam-
pled, and the haplotypes were paired at random to form
genotypes for 1,000 individuals. Two hundred sets of
case-control labels for the 1,000 individuals were sim-
ulated, so that, in each set, 500 were cases and 500 were
controls. Of these sets, 100 were simulated under the
null hypothesis of no association within the region, and
100 were simulated under the assumption that SNP
number 20 was a causal locus for disease. For these
latter 100 sets, the probabilities of being a case were
proportional to 1, 1.5, and 2 for persons carrying 0, 1,
or 2 variant alleles, respectively, at SNP 20. This SNP
was then removed from the set of markers. By this pro-
cedure, 200 data sets were created, each having the same
LD structure. The whole procedure was repeated four
times—each time by starting with a different random
founding population, expanding it exponentially, sam-
pling 2,000 haplotypes, and finally generating 200 sets
of case-control labels—to produce a total of five groups
of 200 data sets, each group having a different LD
structure.

The minimum P value method, FPM, and TPM were
applied to each of the 1,000 simulated data sets, by use
of both permutation and the DSA, to evaluate the ac-
curacy of the DSA as an approximation to permutation.

permutations/simulations were performed,B p 50,000
which required 30 s per data set for the DSA and 520
s for permutation. Let denote a P value obtainedPperm

by permutation and denote the corresponding valuePDSA

from the DSA. Define .D p 100% # (P � P )/PDSA perm perm

Mean D over all 1,000 data sets was 3%, 6%, and 4%
for the minimum, FPM, and TPM P values, respectively.
Thus, the DSA seems slightly conservative. Mean FDF
was 7%, 9%, and 8% for the minimum, FPM, and TPM
P values, respectively. The accuracy of the DSA ap-
proximation for small P values is of particular interest.
For P values between .001 and .005, mean D was 0%,
9%, and 8% for the three methods, and mean wasFDF
0%, 13%, and 14%. P values !.001 were not examined,
since, with Monte Carlo error, these are less precise
estimates.

Finally, by use of the 500 data sets simulated under
the alternative hypothesis, the powers of the minimum
P value method, FPM, and TPM were examined. With
a type I error rate of 5%, the power of the minimum
P value method was 67%. The powers of the FPM and
TPM were higher—75% and 74%, respectively—which
again demonstrates the potential of these methods. The
improvement in power was even greater for type I error
rates of 1% and 0.1%.

DSA in a Whole-Genome Association Study

As the cost of genotyping decreases, whole-genome as-
sociation studies are beginning to become feasible. In
such a study, SNPs would be genotyped throughout the
genome with an intermarker spacing of (for example) 5
kb or 10 kb. These SNPs may or may not have been
selected as haplotype-tagging SNPs (Johnson et al.
2001). We now illustrate how the DSA could be used
in a variety of ways to accelerate the analysis of data
from such a study. We consider a 10-Mb segment of
chromosome, but the analysis could, in principle, be
scaled up to cover the whole genome.

By use of HaploBlock version 1.2, a 10-Mb map with
∼10-kb marker spacing and otherwise the same param-
eters given in the “Applications to Minimum and Prod-
uct P Values” section was simulated. Genotypes for
1,000 individuals at 1,035 SNPs were generated, 500
were randomly assigned to be cases, and 500 were as-
signed to be controls. SNP 844 was chosen as a causal
locus, and the probabilities of being assigned as a case
were proportional to 1, 2, and 3 for persons carrying
0, 1, or 2 variant alleles, respectively, at this SNP. SNP
844 was then removed from the data set.

Individual SNPs were tested using Armitage’s test.
Figure 1 (top panel) shows the resulting P values.� log10

The minimum P value is at SNP 848, which,�52.7 # 10
after Bonferroni correction for 1,034 tests, becomes
.028. By use of permutation, the adjusted minimum P



Figure 1 For 1,034 SNPs in the 10-Mb region, the P values for individual-SNP Armitage tests (top), for the TPM on a window� log10

of 11 SNPs (middle), and for MLA tests on a window of 11 SNPs (bottom). Dotted lines indicate the Bonferroni-adjusted 5% and 1% significance
thresholds.
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value was .026 ( ). The DSA approxi-B p 100,000
mation of this was . Note that, in using theP p .023
DSA, the 1,034 SNPs were partitioned into 10 blocks
of ∼103 SNPs each, so that N was large compared with
the number of SNPs in a block. Block 1 consisted of
SNPs 1–103, block 2 consisted of SNPs 104–206,
and so forth, with block 10 containing SNPs 928–
1,034. For each replicate b ( ), score vectorsb p 1, … ,B

, each of length 103 (except for blockU , … ,Ub(�)1 b(�)10

10, length 107), were generated independently from
their appropriate multivariate normal null distribu-
tions (of dimension 103 or 107). Then, the test sta-
tistics were calculated from , the sta-(b) (b)T , … ,T U1 103 b(�)1

tistics from , and so forth.(b) (b)T , … ,T U104 206 b(�)2

Zaykin et al. (2002b) proposed the use of the TPM
to analyze such data. They simulated case-control data
for a 143-cM map with 2,610 SNPs and tested each
SNP for association with disease by use of Fisher’s exact
test. After Bonferroni correction, none was significant
at the 1% level. The TPM was then used to combine
the P value from each SNP with those of its neighboring
10 SNPs (i.e., 5 SNPs on either side). The minimum
TPM P value, after Bonferroni correction, was well be-
low .01, showing the potential benefits of combining
evidence from neighboring SNPs. However, Zaykin et
al. (2002b) calculated the TPM P values under the as-
sumption that the correlation matrix of the P values for
a window of 11 neighboring SNPs is constant across
the entire 2,610 SNPs, which is somewhat optimistic.

We used the same approach of combining the P values
of 11 neighboring SNPs, using the TPM on our simu-
lated data. In a real application, one might adopt a more
sophisticated way of choosing sets of SNPs to combine,
making use of haplotype block structure. Instead of as-
suming a constant correlation matrix for P values of
adjacent SNPs, as Zaykin et al. (2002b) did, we used
the DSA. Again, we divided the 1,034 SNPs into 10
blocks. In this case, however, each test depends on a
window of 11 neighboring SNPs and, because win-
dows overlap, the blocks must also overlap. Thus, block
1 consisted of SNPs 1–108, block 2 of SNPs 99–211,
block 3 of SNPs 202–314, and so forth. That is, the
blocks were the same as before, but with an addi-
tional five SNPs included on either side. Score vectors

, each of length 113 (except for blockU , … ,Ub(�)1 b(�)10

1 [length 108] and block 10 [length 112]), were gen-
erated independently from their multivariate normal
null distributions. Then, test statistics , for(b) (b)T , … ,T1 103

windows centered on SNPs 1–103, were calculated from
block 1; were calculated from block 2; and(b) (b)T , … ,T104 206

so forth.
Figure 1 (middle panel) shows the resulting � log10

P values. The minimum TPM P value (obtained using
) was at SNP 849 (and it was6 �5B p 5 # 10 1.0 # 10

when permutation was used). Adjustment�51.1 # 10

of this minimum TPM P value by use of the Bonferroni
method yielded . This adjustment ignores theP p .011
correlation between TPM P values, which is high in this
situation because of the use of overlapping windows.
Power is gained by taking this correlation into account,
which can be done using the algorithm of Ge et al.
(2003). This yielded an adjusted minimum TPM P value
of .0043.

Finally, the MLA test was applied to the same win-
dows, and figure 1 (bottom panel) shows the P� log10

values. The minimum MLA P value was at�71.9 # 10
SNP 847. Bonferroni adjustment yielded P p 2.0 #

. Again, the MLA tests are correlated, and power�410
is gained by taking this correlation into account. Mul-
tiple-testing adjustment by use of the DSA with B p

yielded ( by use of6 �5 �510 P p 8.1 # 10 P p 5.4 # 10
permutation).

In conclusion, for this data set, the combining of P
values from neighboring SNPs is certainly worthwhile,
and the MLA test gives a more significant result than
the TPM. The difference between multiple-testing–ad-
justed TPM or MLA P values calculated using the al-
gorithm of Ge et al. (2003) or the DSA and those cal-
culated using Bonferroni’s method shows the benefit of
the more powerful methods.

The DSA required about 5% of the time required by
permutation in most of these analyses. The exception
was the multiple-testing adjustment of the MLA test, in
which the DSA required slightly !20% of the time re-
quired for permutation. The reason for this difference
is that the MLA test involves matrix multiplication to
calculate , and this requires an increas-T �1T p U V Ul b(l) b(l) b(l)

ingly nonnegligible computation time as the dimension
of (11, in this application) increases.Ub

Discussion

The DSA has been demonstrated to be a good approx-
imation to permutation, but much faster. In particular,
it is no less accurate than the use of the asymptotic null
distribution to calculate the P value of the MLA test,
which is done by both Chapman et al. (2003) and Schaid
et al. (2002). Also, given the very close relation between
the MLA test and Hotelling’s T test, it is likely to be no
worse than the use of the asymptotic null distribution
for Hotelling’s test. In the applications reported in the
present study, the DSA requires 5%–20% of the time
required for permutation.

There are possibilities for reducing the computational
time further. First, importance sampling could be used.
The DSA amounts to evaluating a probability (the P
value) by Monte Carlo integration. Importance sam-
pling is another Monte Carlo integration approach,
which might require fewer simulations of the score vec-
tor. A second way to reduce the number of simulations
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would be to fit a parametric distribution to the simu-
lated P values (Dudbridge and Koeleman 2004).

When the null distributions of are theT , … ,T1 L

same, a third way to reduce the computational time
would be to work directly with these test statistics
rather than convert them into P values. For multiple-
testing adjustment of minimum P values, the use of

gives the same as the use ofG p � max {T , … ,T } P1 L min

. In combining tests, test statistics may beG p P(1)

summed rather than having their P values multiplied
(Neuhaüser 2003). In cases in which the null distribu-
tions of are , the summing of test statistics2T , … ,T x1 L 2

and the multiplying of P values yield the same andPFish

. In other cases, the final P values will be different,Ptrunc(t)

but the test will be no less valid. As Zaykin et al. (2002b)
note, there is no uniformly most powerful way to com-
bine P values. For the FKBP5 data, summing the Ar-
mitage test statistics rather than multiplying P values
reduced the computational time for the DSA by 16%
and gave very similar results. In fact, when the SNPs
are in linkage equilibrium, the MLA test statistic for a
set of SNPs is approximately equal to the sum of the
Armitage test statistics for the individual SNPs. This is
because is approximately diagonal, and soV T pb

.T �1 �1 �1U V U � U V U � … � U V Ub b b b(1) b(1) b(1) b(L) b(L) b(L)

For association studies, the MLA test has the ad-
vantage that the asymptotic null distribution of the
test statistic is known, and so P values can be cal-
culated analytically. However, as Chapman et al. (2003)
showed, its power begins to diminish as the density of
SNPs increases beyond a certain unknown threshold.
This is because the number of degrees of freedom of
the test continues to increase, whereas the ability of the
marker SNPs to predict the SNP at the causal locus tends
toward a limit (or reaches it, if the marker set contains
the causal SNP). This may be the reason why the sig-
nificance of the MLA test, when applied to the FKBP5
fine-mapping set, is much less than that of the minimum
P value method, FPM, and TPM. In fact, the context
in which Chapman et al. (2003) propose the MLA test
is one of haplotype-tagging SNPs, in which the tagging
SNPs have been selected to minimize redundancy in the
set of markers for predicting the genotype at a causal
locus. The FPM and TPM do not have this drawback,
and the TPM may have an advantage when only a few
of the SNPs in the set are associated with the trait or
when some SNPs are more strongly associated than oth-
ers (Zaykin et al. 2002b). On the other hand, they re-
quire permutation, the DSA, or a crude approximation
to obtain the P value and, if the set of SNPs being tested
contains a subset of SNPs which have higher LD with
each other than the average LD in the set, then this
subset may dominate the test statistic, which means that
the power to detect association with SNPs inside the
subset will be high but, for SNPs outside the subset,

power will be lacking. Thus, neither the MLA test (or
the closely related Hotelling’s test) nor product methods
are uniformly better than the other.

The principle of sampling directly from the asymp-
totic null joint distribution of a set of test statistics is
not limited to trend-type tests, or even to GLMs. With-
in the context of the class of GLMs described in the
present study, it would be straightforward to allow for
dominance by replacing , the covariate denoting theXg

number of variant alleles carried, with two indicator
variables; one of which is given the value 1 when one
variant allele is carried, and the other is given the
value 1 when two are carried. Multiallelic markers
could also be incorporated easily by replacing withXg

, where denotes the number of copies(X , … ,X ) Xg g g1 A a

of allele a ( ) that are carried. This woulda p 1, … ,A
yield the multiallelic trend test (Czika and Weir 2004).
Beyond GLMs, many types of score tests could be
treated in a similar way. For example, concerns about
the vulnerability of population case-control studies to
false positives due to population admixture and cryptic
relatedness led to the popularity of family-based studies
and the transmission/disequilibrium test (TDT) (Spiel-
man et al. 1993). If phase is known, the joint null dis-
tribution for a set of TDTs is straightforward to derive
(see the appendix).

A reviewer of the present work drew our attention
to an advance, online publication by D.Y. Lin (in press)
on the Bioinformatics Web site. In the publication, Lin
also shows how permutation can be avoided by deriving
the asymptotic null joint distribution of a set of score
tests and by sampling directly from this distribution.
However, his method of sampling from the distribution
is different from ours. In cases in which the length, M,
of the score vector is !N, the number of individuals, or
in which the score vector is broken up into blocks of
length !N (as we do, because the score vector is only
asymptotically normally distributed), Lin’s sampling
method is slower than ours. For example, in the analysis
of the fine-mapping data for FKBP5 described in the
“Applications to Minimum and Product P Values” sec-
tion, Lin’s method required eight times as much time
as ours. In cases in which and the score vectorM 1 N
is not broken into blocks, Lin’s method is faster than
ours. However, the asymptotic assumption is then less
reliable. As Lin acknowledges, more theoretical and nu-
merical investigations are required. Lin also does not
fully explain what to do when tests involve nuisance
parameters, as is the case in the present study, in which
there is an intercept term (and possibly covariate ef-
fects). He says such nuisance parameters should be re-
placed by their maximum-likelihood estimates but does
not mention the effect this has on the variance of the
score vector for the remaining parameters. For the
GLMs discussed in the “Score Statistics for a Class of
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GLMs” section above, this amounts to ignoring the
term in the formula for the score variance,�1V V Vba aa ab

. Lin also applies the approach to false discovery rates.Vb
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Appendix

Suppose there are trios and thus N parents. LetN/2
M be the number of SNP loci. The TDT for locus j
( ) is the score test for the null hypothesis,j p 1, … ,M

, that a parent heterozygous at locus j is equally likelyH0j

to transmit either allele to an affected child. Let betij

equal to 1 if parent i is heterozyous at locus j and trans-
mits the variant allele, �1 if parent i is heterozygous
and transmits the wild-type allele, and 0 if parent i is
homozygous at locus j. The score statistic for isH0j

. From the multivariate central limit the-N
U p 2� tj ijip1

orem, when are all true, is as-H , … ,H (U , … ,U )01 0M 1 M

ymptotically normally distributed with mean vector zero
and variance matrix V, whose th element is(j,k)

N

V p 4 t t�jk ji ki
ip1

Note that , the variance of , equals , whereV U 4H Hjj j j j

is the number of parents heterozygous at locus j. Hence,
, the usual TDT formula.N2U /V p � t /Hj jj ij jip1
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